e-MMC vs. NAND with built-in ECC
Doug Wong, Toshiba America Electronic Components, Inc.
8/18/2011 9:44 AM EDT
As NAND flash continues to increase in density and decrease in cost per gigabyte, it has enabled more cost-effective storage. This benefits a wide (and constantly growing) range of digital consumer products. Selecting the most appropriate high performance NAND architecture for any given application is of increasing importance as the ECC requirements for NAND continue to increase.
This article will explore the attributes of and differences between e-MMC and NAND with built-in ECC (such as Toshiba’s SmartNANDTM) – as well as go into detail about the applications that are best suited for each.
To read the full article, click here
Related Semiconductor IP
- RVA23, Multi-cluster, Hypervisor and Android
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- H.264 Decoder
Related White Papers
- Seven Key Advantages of Implementing eFPGA with Soft IP vs. Hard IP
- Symbolic Simulation Formally Verifies ECC
- Architecture-based vs. flow-based approach to DFT
- ECC Holds Key to Next-Gen Cryptography
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design