e-MMC vs. NAND with built-in ECC
Doug Wong, Toshiba America Electronic Components, Inc.
8/18/2011 9:44 AM EDT
As NAND flash continues to increase in density and decrease in cost per gigabyte, it has enabled more cost-effective storage. This benefits a wide (and constantly growing) range of digital consumer products. Selecting the most appropriate high performance NAND architecture for any given application is of increasing importance as the ECC requirements for NAND continue to increase.
This article will explore the attributes of and differences between e-MMC and NAND with built-in ECC (such as Toshiba’s SmartNANDTM) – as well as go into detail about the applications that are best suited for each.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Articles
- Seven Key Advantages of Implementing eFPGA with Soft IP vs. Hard IP
- David vs. Goliath: Can Small Models Win Big with Agentic AI in Hardware Design?
- Symbolic Simulation Formally Verifies ECC
- Architecture-based vs. flow-based approach to DFT
Latest Articles
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension