Common programming models for use on a dual-core processor
Mar 22 2006 (12:05 PM), Embedded.com
As embedded processors become more computationally capable, many new (and more advanced) algorithms can be ported, which in turn enable new applications. The most flexible architectures scale from low-end to high-end applications, enabling a common development platform across projects as well as providing more flexibility for development teams.
One way processor vendors provide the desired scalability with a single architecture is to include both single- and dual-core platforms. The goal with a multi-core processor is to allow nearly ideal scaling without overcomplicating the programming model. For example, in a dual-core system, the goal is to achieve as close to a 2x performance increase as possible.
In this paper, we will discuss the most common programming techniques for maximizing performance, as well as some system-related topics that commonly arise when porting to a dual-core processor.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- Interstellar: Fully Partitioned and Efficient Security Monitoring Hardware Near a Processor Core for Protecting Systems against Attacks on Privileged Software
- MPEG-4 is accelerated and footprint reduced by use of a configurable processor core
- Choosing between dual and single core media processor configurations in embedded multimedia designs
- Development and use of an Instruction Set Simulator of 68000-compatible processor core
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models