20nm Dilemma Explained
Handel Jones, International Business Strategies Inc.
EETimes (4/4/2014 06:00 PM EDT)
Fully depleted silicon-on-insulator is the best solution for the 28nm and 20nm technology nodes because of its lower cost and leakage and higher performance than bulk CMOS.
The cost of a 100mm2 die in FD SOI at 28nm is 3.0% lower than bulk CMOS and 13.0% at 20nm due to higher parametric yield as well as lower wafer cost. The data also shows that an FD SOI die with comparable complexity to bulk CMOS is 10% to 12% smaller.
The combination of the smaller die area and higher parametric yield should give an equivalent product a 20% cost advantage at 20nm for FD SOI compared to bulk CMOS. In addition, at 28nm FD SOI has performance that is 15% higher than 20nm bulk CMOS. (See chart below.)
To read the full article, click here
Related Semiconductor IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
- RISC-V Debug & Trace IP
Related Articles
- SoC Configurable Platforms -> SoC opportunities confront an old dilemma
- The embedded systems hardware ‘make or buy’ dilemma
- The Design Dilemma: Multiprocessing Using Multiprocessors and Multithreading
- Interconnect modeling at 20nm - more of the same or completely different?
Latest Articles
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events
- A Reconfigurable Framework for AI-FPGA Agent Integration and Acceleration
- Veri-Sure: A Contract-Aware Multi-Agent Framework with Temporal Tracing and Formal Verification for Correct RTL Code Generation
- FlexLLM: Composable HLS Library for Flexible Hybrid LLM Accelerator Design