Post-Quantum Cryptography IP

Filter
Filter

Login required.

Sign in

Compare 18 IP from 11 vendors (1 - 10)
  • XMSS Post-Quantum Cryptography IP
    • XMSS is a Post-Quantum Cryptographic (PQC) algorithm, meaning it is mathematically designed to be robust against a cryptanalytic attack using a quantum computer.
    • XMSS is a stateful Hash-Based Signature Scheme that has been recommended by NIST in 2020.
    Block Diagram -- XMSS Post-Quantum Cryptography IP
  • APB Post-Quantum Cryptography Accelerator IP Core
    • Implements ML-KEM and ML-DSA post-quantum cryptography digital signature standards. The system interface is an microprocessor slave bus (APB, AHB, AXI options are available).
    • The design is fully synchronous and requires only minimal CPU intervention due to internal microprogramming sequencer.
    Block Diagram -- APB Post-Quantum Cryptography Accelerator IP Core
  • Crypto Coprocessor with integrated Post-Quantum Cryptography IPs
    • The Crypto Coprocessors are a hardware IP core platform that accelerates cryptographic operations in System-on-Chip (SoC) environment on FPGA or ASIC.
    • Symmetric operations are offloaded very efficiently as it has a built-in scatter/gather DMA. The coprocessors can be used to accelerate/offload IPsec, VPN, TLS/SSL, disk encryption, or any custom application requiring cryptography algorithms.
    Block Diagram -- Crypto Coprocessor with integrated Post-Quantum Cryptography IPs
  • Unified Hardware IP for Post-Quantum Cryptography based on Kyber and Dilithium
    • Turn-key implementations of the NIST FIPS recommended CRYSTALS post-quantum for key encapsulation (KEM) and digital signature algorithm (DSA)
    Block Diagram -- Unified Hardware IP for Post-Quantum Cryptography based on Kyber and Dilithium
  • ML-KEM / ML-DSA Post-Quantum Cryptography IP
    • ML-KEM (Crystals-Kyber) and ML-DSA (Crystals-Dilithium) are Post-Quantum Cryptographic (PQC) algorithms, meaning they are mathematically designed to be robust against a cryptanalytic attack using a quantum computer.
    • Both have been standardized by the NIST in it post-quantum cryptography project.
    Block Diagram -- ML-KEM / ML-DSA Post-Quantum Cryptography IP
  • PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
    • eSi-Crystals is a hardware core for accelerating the high-level operations specified in the NIST FIPS 202, FIPS 203 and FIPS 204 standards.
    • It supports the Cryptographic Suite for Algebraic Lattices (CRYSTALS), it is lattice-based digital signature algorithm designed to withstand attacks from quantum computers, placing it in the category of post-quantum cryptography (PQC). 
    Block Diagram -- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
  • Dilithium IP Core
    • Dilithium IP Core is a post-quantum digital signature algorithm (DSA).
    • It currently supports Sign and Verify functions, with key generation functionality planned for future implementation.
    • This IP is compliant with Dilithium specification submitted on round 3 of NIST Post-Quantum Cryptography Standardization process.
    Block Diagram -- Dilithium IP Core
  • Falcon IP Core
    • Falcon IP Core is a post-quantum digital signature algorithm (DSA).
    • It is currently under development. It is going to be compliant with Falcon specification submitted on round 3 of NIST Post-Quantum Cryptography Standardization process.
    • Additionally, Falcon IP Core will be enhanced to achieve compliance with NIST Falcon Standart when it is released. 
    Block Diagram -- Falcon IP Core
  • KYBER IP Core
    • supports encapsulation and decapsulation operations
    • supports all modes K=2,3,4.
    • is compliant with Kyber specification round 3.
    • has fully stallable input and output interfaces. 
    • Key generation feature is going to be implemented in the near future.
    Block Diagram -- KYBER IP Core
  • Root of Trust (RoT)
    • Large Silicon Footprint: Open-source RoTs typically require significant silicon area, making them impractical for size-constrained devices.
    • High Energy Consumption: Existing solutions often consume excessive power, limiting their adoption in low-power environments like IoT devices.
    • Lack of Future-Proofing: Emerging security demands, such as Post-Quantum Cryptography (PQC), are frequently overlooked by current designs.
×
Semiconductor IP