Is Tomorrow's Embedded-Systems Programming Language Still C?
Ron Wilson, Altera
What is the best language in which to code your next project? If you are an embedded-system designer, that question has always been a bit silly. You will use, C—or if you are trying to impress management, C disguised as C++. Perhaps a few critical code fragments will be written in assembly language. But according to a recent study by the Barr Group, over 95 percent of embedded-system code today is written in C or C++.
And yet, the world is changing. New coders, new challenges, and new architectures are loosening C’s hold—some would say C’s cold, dead grip—on embedded software. According to one recent study the fastest-growing language for embedded computing is Python, and there are many more candidates in the race as well. These languages still make up a tiny minority of code. But increasingly, the programmer who clings to C/C++ risks sounding like the assembly-code expert of 20 years ago: their way generates faster, more compact, and more reliable code. So why change?
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
- High-Speed 3.3V I/O library with 8kV ESD Protection in TSPCo 65nm
- Verification IP for DisplayPort/eDP
- Wirebond Digital and Analog Library in TSMC 65nm
Related White Papers
- Reliable programming in ARM assembly language
- Embedded Systems: Programmable Logic -> Programming enters designer's core
- Tools For Reprogrammability -> Reuse forces embedded programming
- Language Attributes Ensure IC Verification
Latest White Papers
- What tamper detection IP brings to SoC designs
- Analyzing Modern NVIDIA GPU cores
- RISC-V in 2025: Progress, Challenges,and What’s Next for Automotive & OpenHardware
- Leveraging RISC-V as a Unified, Heterogeneous Platform for Next-Gen AI Chips
- Design and implementation of a hardened cryptographic coprocessor for a RISC-V 128-bit core