Reducing power in AMD processor core with RTL clock gating analysis
Steve Kommrusch - AMD, Inc.
EETimes (2/4/2013 10:45 AM EST)
Lowering the power consumption of consumer products and networking centers is an important design consideration, and this effort begins with many of the chips that go into these devices. Semiconductor design innovators like AMD want to improve on previous generation designs in terms of faster performance in a given power envelope, higher frequency at a given voltage, and improved power efficiency through clock gating and unit redesign.
With these aims, the AMD low-power core design team used a power analysis solution that helped analyze pre-synthesis RTL clock-gating quality, find opportunities for improvements, and generate reports that the engineering team could use to decrease the operating power of the design. By targeting pre-synthesis RTL, power analysis can be run more often and over a larger number of simulation cycles — more quickly and with fewer machine resources than tools that rely on synthesized gates. The focus on clock gating and the quick turnaround of RTL analysis allowed AMD to achieve measurable power reductions for typical applications of a new, low-power X86 AMD core.
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
- High-Speed 3.3V I/O library with 8kV ESD Protection in TSPCo 65nm
- Verification IP for DisplayPort/eDP
- Wirebond Digital and Analog Library in TSMC 65nm
Related White Papers
- Achieving Low power with Active Clock Gating for IoT in IPs
- Power analysis of clock gating at RTL
- Throttle IP Core Power Dissipation: Use RTL Power Analysis Early and Often
- Power awareness in RTL design analysis
Latest White Papers
- What tamper detection IP brings to SoC designs
- Analyzing Modern NVIDIA GPU cores
- RISC-V in 2025: Progress, Challenges,and What’s Next for Automotive & OpenHardware
- Leveraging RISC-V as a Unified, Heterogeneous Platform for Next-Gen AI Chips
- Design and implementation of a hardened cryptographic coprocessor for a RISC-V 128-bit core