Programmable logic innovation is overdue
Programmable Logic DesignLine (01/27/09, 12:11:00 PM EST)
The programmable logic industry has remained stubbornly resistant to change over the past 20 years of its existence. If you follow this industry, you know that the FPGA logic fabric that is implemented in the latest offerings from Altera and Xilinx has not fundamentally changed since its commercial introduction back in the 1980's, exemplifying what Harvard Business School Professor Clayton Christensen described in his book "The Innovator's Dilemma".
In his book, Christensen presents a behavioral model where larger, successful companies have problems in discovering and nurturing "disruptive" product technologies that initially do not look attractive, but eventually prove superior.
Looking at Altera and Xilinx, you can see that their products have evolved largely due to Moore's Law, which is a "sustaining" technology in Christensen's model. In other words, the incumbent vendors have relied on process technology advancement to sustain the marketability of their products over time rather than true architectural innovation.
Now, with programmable logic markets such as carrier Ethernet, data centers, and wireless infrastructure being awakened from their post-bubble slumber by the YouTube generation, the time has come for innovation. Packet-based equipment is moving to the next level of throughput (generically referred to as bandwidth), with increasing touches per packet due to security and quality of service requirements.
Unfortunately, equipment companies who relied on programmable logic to provide the flexibility in their hardware during the heady bubble growth of the late 90's are now finding that the 20-year-old FPGA cannot meet the new challenges, even with the help of Moore's Law. Programmable logic applications are evolving, and today's FPGAs cannot service them.
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O library with ODIO and 5V HPD in TSMC 16nm
- 1.8V/3.3V I/O Library with ODIO and 5V HPD in TSMC 12nm
- 1.8V to 5V GPIO, 1.8V to 5V Analog in TSMC 180nm BCD
- 1.8V/3.3V GPIO Library with HDMI, Aanlog & LVDS Cells in TSMC 22nm
- Specialed 20V Analog I/O in TSMC 55nm
Related White Papers
- Embedded Systems: Programmable Logic -> Programming enters designer's core
- Embedded Systems: Programmable Logic -> Common gateway networks enable remote programs
- Embedded Systems: Programmable Logic -> FPGAs don remote reprogram habits
- Embedded Systems: Programmable Logic -> Embarrassment of riches hinders proper use of Moore's Law