Use open loop analysis to model power converters with multiple feedback paths
By Christopher Basso, Nicolas Cyr and Stephanie Conseil from ON Semiconductor Corp.
automotivedesignline.com (December 17, 2008)
Loop stability analysis usually starts from an open-loop Bode plot of the plant under study such as the power stage of a buck or a flyback converter. In this situation, the designer can extract phase and gain data within the frequency range of interest.
The designer's job is to identify a compensator structure, which will lead to the selected crossover frequency affected by the right phase margin. The final step requires the study of the total loop gain, the power plant and the compensator, showing that the poles/zeros placed on the compensator ensure stability once the loop is closed.
If this operation is rather straightforward with single loops, the operation becomes more complicated with converters implementing weighted feedback. This article capitalizes on the work done with loop stability analysis techniques and explores different ways to apply the them to power converters featuring multiple feedback paths.
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
- High-Speed 3.3V I/O library with 8kV ESD Protection in TSPCo 65nm
- Verification IP for DisplayPort/eDP
- Wirebond Digital and Analog Library in TSMC 65nm
Related White Papers
- Power awareness in RTL design analysis
- Reducing power in AMD processor core with RTL clock gating analysis
- Guidelines for early power analysis
- Using static analysis to detect coding errors in open source security-critical server applications
Latest White Papers
- What tamper detection IP brings to SoC designs
- Analyzing Modern NVIDIA GPU cores
- RISC-V in 2025: Progress, Challenges,and What’s Next for Automotive & OpenHardware
- Leveraging RISC-V as a Unified, Heterogeneous Platform for Next-Gen AI Chips
- Design and implementation of a hardened cryptographic coprocessor for a RISC-V 128-bit core