M-LVDS for true multipoint interfaces on busses--and more
Planet Analog (Mar 30, 2009)
Over the years, various technologies have been used to transmit signals over backplane busses. As speeds increase to cater to the ever-growing volume of telecom and datacom traffic, the limitation of the older, single-ended and emitter-coupled logic techniques becomes apparent.
Multipoint, low-voltage differential signaling (M-LVDS) is an interface standard similar to LVDS. It provides the benefits of high-speed, low-power, and low-EMI transmission solutions to today's bus applications. M-LVDS is suitable for data, control, synchronization and clock signals.
In today's backplanes, high-speed signals carrying the payload data are typically point-to-point (one driver and one receiver) interfaces. These connect various core chips such as ASICs, FPGAs, DSPs, and similar. Properly terminated point-to-point interfaces offer the best performance for high-speed signals. Signaling levels used can be PECL, CML, VML and LVDS with speeds going up to 4Gbps and higher, Figure 1.
To read the full article, click here
Related Semiconductor IP
- GF12 - 0.8V LVDS Rad-Hard Transceiver in GF 12nm
- High-speed LVDS (Low-Voltage Differential Signaling) transceiver
- LVDS Transceiver
- Open LVDS Display Interface (OpenLDI) Verification IP
- LVDS Verification IP
Related White Papers
Latest White Papers
- What tamper detection IP brings to SoC designs
- Analyzing Modern NVIDIA GPU cores
- RISC-V in 2025: Progress, Challenges,and What’s Next for Automotive & OpenHardware
- Leveraging RISC-V as a Unified, Heterogeneous Platform for Next-Gen AI Chips
- Design and implementation of a hardened cryptographic coprocessor for a RISC-V 128-bit core