In Pursuit of Power
Ron Wilson, Intel FPGA
It is no news that power design for modern systems is hard. The escalating demands of advanced chips—huge bursts of current, multidecade operating ranges, fast transients, and digital mode controls—have turned supplying power at the point-of-load (PoL) from an exercise in arithmetic into an adventure in high-bandwidth mixed-signal design. Looking in the opposite direction, pressure for greater plant-level efficiency is pushing really high DC voltages—48V and more—from the bottom of the rack or the back of the chassis closer and closer to the CPUs and SoCs. Caught in the middle, power designers must somehow produce a mixed-signal network and not a train wreck.
The Supply Side
The challenges start out with the bulk DC regulators. In aircraft, 28 VDC has long been the de-facto standard. In hybrid and electric vehicles, several hundred VDC may be available at the battery. Telco or server racks may be distributing anything from the traditional 12 VDC to 48V.
Normal practice says you step these high voltages down for distribution to individual circuit boards. But if the system is large or efficiency is a vital concern, multiple layers of buck regulators may not be the best choice. Efficiency dictates that you push the high DC voltage as deep into the system as you can.
Some designers talk about powering PoL regulators directly from 48V. In a recent presentation, Google claimed their 48V rack architecture reduced distribution losses by a factor of 16 compared to 12V racks. The Google approach fed 48V directly to the PoL regulators handling big loads like CPUs or DRAM arrays, while stepping down the bulk voltage to 12V to supply more complex requirements with specialty regulators.
To read the full article, click here
Related Semiconductor IP
- Video Tracking FPGA IP core for Xilinx and Altera
- Video Tracking FPGA IP core for Xilinx and Altera
- Video Tracking FPGA IP core for Xilinx and Altera
- Aurora-like 64b/66b @14Gbps for ALTERA Devices
- Aurora-like 8b/10b @3Gbps for ALTERA Devices
Related White Papers
- Achieving Low power with Active Clock Gating for IoT in IPs
- Integration of power:communication interfaces in smart true wireless headset designs
- Testing Of Repairable Embedded Memories in SoC: Approach and Challenges
- Shift Power Reduction Methods and Effectiveness for Testability in ASIC
Latest White Papers
- Adaptable Hardware with Unlimited Flexibility for ASIC & SoC ICs
- CAST Provides a Functional Safety RISC-V Processor IP for Microchip FPGAs
- Design and Implementation of Test Infrastructure for Higher Parallel Wafer Level Testing of System-on-Chip
- Soft Tiling RISC-V Processor Clusters Speed Design and Reduce Risk
- 8051s in Modern Systems: Interfacing to AMBA Buses