Streamlining Interconnect Integration Accelerates Globally Distributed Design
As system on chip designs grow more complex, it becomes more and more difficult for chip companies to optimize the work of their distributed design teams. While each separate team has an area of expertise and sets their focus on a particular aspect of the SoC, the hard part comes in integrating these individual design efforts together. When something goes wrong and it doesn’t work, the company’s critical time to market advantage starts to slip.
The problem arises because chipmakers split up design tasks so each team works to the strengths of its expertise. One team will design the basic architecture at headquarters and then parcel out the graphics portion to Design Team A. Design Team B gets to work on the processor complex and Design Team C is set to optimize video and audio processing. But the connectivity portion of the chip has to work with all the other subsystems. When each individual team completes its work in meeting performance goals and design constraints, then a designated interconnect team has the task bringing all this work back together into the final SoC.
Related Blogs
- Customer Spotlight: Viettel Accelerates Design of Its First 5G SoC with Synopsys ASIP Designer
- IP Integration : What is the difference between stitching and weaving?
- Heard at DAC: is IP integration the real high-level design?
- IP integration: Is it the real system-level design?
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?