Which Direction for EDA - 2D, 3D, or 360?
There’s been lots of discussion over the last month or 2 about the direction of EDA going forward. And I mean literally, the “direction” of EDA. Many semiconductor industry folks and proponents have been telling us to hold off on that obituary for 2D scaling and Moore’s law. Others have been doing quiet innovation in the technologies needed for 3D die and wafer stacks. And Cadence has recently unveiled its holistic 360 degree vision for EDA that has us developing apps first and silicon last.
I’ll examine each of these orthogonal directions in the next few posts. In this post, I’ll first examine the problem that is forcing us to make these choices.
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related Blogs
- What's driving 3D IC design? Do 2D EDA tools need a total overhaul to support 3D design?
- 3D chips: IBM server
- 3D chips: design tools
- TierLogic lifts the veil: another take on the 3D FPGA
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?