Using system services for real time embedded multimedia applications
Embedded.com
Oct 31 2005 (9:00 AM)
As embedded processing solutions gain in complexity and popularity, software engineers find the need to port multimedia algorithms from proof-of-concept PC-based systems with ample memory to embedded systems where resource management is essential to meet performance requirements.
Ideally, they want to achieve the highest possible performance without increasing the complexity of their “comfortable” programming model in terms of power consumption, memory allocation and performance.
What’s more, as applications blur the line between the realms of signal processing and control, into the realm of “convergent processing,” the software programming models from the two different worlds often collide. The challenges for the programmer dovetail with the challenges that silicon providers face - how can customers take advantage of features that enhance performance without overcomplicating their programming model?
Processor vendors take a multi-tiered approach to resolving this dilemma: adding hardware “hooks” on the silicon itself, providing a low-level software infrastructure that facilitates task scheduling and resource management, and offering a variety of operating systems that hide this complexity, to a great extent, from developers.
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
- High-Speed 3.3V I/O library with 8kV ESD Protection in TSPCo 65nm
- Verification IP for DisplayPort/eDP
- Wirebond Digital and Analog Library in TSMC 65nm
Related White Papers
- Optimizing embedded software for real-time multimedia processing
- Anti tamper real time clock (RTC) - make your embedded system secure
- HW/SW Interface Generation Flow Based on Abstract Models of System Applications and Hardware Architectures
- Enabling security in embedded system using M.2 SSD
Latest White Papers
- What tamper detection IP brings to SoC designs
- Analyzing Modern NVIDIA GPU cores
- RISC-V in 2025: Progress, Challenges,and What’s Next for Automotive & OpenHardware
- Leveraging RISC-V as a Unified, Heterogeneous Platform for Next-Gen AI Chips
- Design and implementation of a hardened cryptographic coprocessor for a RISC-V 128-bit core