Unlock the processing power of wireless modules
Evan Jones, Sierra Wireless
embedded.com (November 11, 2013)
When embedded designers take advantage of the often-overlooked processing power within a wireless module they can typically eliminate the system microcontroller, thus creating a cellular-enabled system that is smaller, more efficient, and much cheaper to produce. Following are guidelines for choosing a module that can act as both microcontroller and modem.
When adding cellular connectivity to an embedded system, many designers choose a wireless module because they are pre-integrated components and perform cellular communications with minimum configuration. Pre-certified for use with mobile networks, they’re ready for worldwide deployment. The developer interacts with the module using serial interfaces and doesn’t have to be concerned with complex aspects of cellular modem transceiver design.
More often than not, designers use a wireless module in combination with a standard microcontroller, usually the two highest-cost items in the bill of materials. The microcontroller manages the application and interacts with peripherals while the module mainly takes care of cellular communications.
However, many wireless modules are capable of doing much more than managing cellular communications since they typically use an integrated chipset that includes a 32-bit ARM microcontroller. Accessing this processing power, designers can use the module to manage the entire application. The module can behave as the central processor and modem, eliminating the need for a standalone microcontroller. The resulting system is more compact and uses less power, with a noticeably lower material cost.
To read the full article, click here
Related Semiconductor IP
- SLVS Transceiver in TSMC 28nm
- 0.9V/2.5V I/O Library in TSMC 55nm
- 1.8V/3.3V Multi-Voltage GPIO in TSMC 28nm
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
Related White Papers
- A RISC-V ISA Extension For Ultra-Low Power IoT Wireless Signal Processing
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- How Low Can You Go? Pushing the Limits of Transistors - Deep Low Voltage Enablement of Embedded Memories and Logic Libraries to Achieve Extreme Low Power
- Revolutionizing Consumer Electronics with the power of AI Integration
Latest White Papers
- What tamper detection IP brings to SoC designs
- Analyzing Modern NVIDIA GPU cores
- RISC-V in 2025: Progress, Challenges,and What’s Next for Automotive & OpenHardware
- Leveraging RISC-V as a Unified, Heterogeneous Platform for Next-Gen AI Chips
- Design and implementation of a hardened cryptographic coprocessor for a RISC-V 128-bit core