Unlock the processing power of wireless modules
Evan Jones, Sierra Wireless
embedded.com (November 11, 2013)
When embedded designers take advantage of the often-overlooked processing power within a wireless module they can typically eliminate the system microcontroller, thus creating a cellular-enabled system that is smaller, more efficient, and much cheaper to produce. Following are guidelines for choosing a module that can act as both microcontroller and modem.
When adding cellular connectivity to an embedded system, many designers choose a wireless module because they are pre-integrated components and perform cellular communications with minimum configuration. Pre-certified for use with mobile networks, they’re ready for worldwide deployment. The developer interacts with the module using serial interfaces and doesn’t have to be concerned with complex aspects of cellular modem transceiver design.
More often than not, designers use a wireless module in combination with a standard microcontroller, usually the two highest-cost items in the bill of materials. The microcontroller manages the application and interacts with peripherals while the module mainly takes care of cellular communications.
However, many wireless modules are capable of doing much more than managing cellular communications since they typically use an integrated chipset that includes a 32-bit ARM microcontroller. Accessing this processing power, designers can use the module to manage the entire application. The module can behave as the central processor and modem, eliminating the need for a standalone microcontroller. The resulting system is more compact and uses less power, with a noticeably lower material cost.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- At the edge of data processing
- A RISC-V ISA Extension For Ultra-Low Power IoT Wireless Signal Processing
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- How Low Can You Go? Pushing the Limits of Transistors - Deep Low Voltage Enablement of Embedded Memories and Logic Libraries to Achieve Extreme Low Power
Latest White Papers
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience