TI's MSP430 vs. ST Microelectronics' ARM Cortex-based processor for battery-powered apps
By Ed Hopkins
(02/26/08, 01:23:00 AM EST) -- Embedded.com
(02/26/08, 01:23:00 AM EST) -- Embedded.com
I recently conducted a tradeoff study (see Table 1) on several 16 and 32-bit low-power microprocessors for a handheld device in the biotech industry. There are four key areas of concern: power/current consumption, physical package size, cost, and compiler/firmware support. Texas Instrument's low-power 16-bit MSP430 family has traditionally been a first choice for this sort of application. The Renesas family of 16-bit micros is competitive with the MSP430 in pricing but does not beat the MSP in power consumption. However, the new ARM Cortex offering from ST Microelectronics, is the first chip on the market giving TI a serious run for its MSP money.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- Cortex-A9 Processor Optimization Pack
- ARM Cortex-R4, A mid-range processor for deeply-embedded applications
- Cortex-R4 -- A comparison with the ARM9E processor family
- Complex SoC Verification using ARM Processor
Latest White Papers
- Monolithic 3D FPGAs Utilizing Back-End-of-Line Configuration Memories
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard