TI's MSP430 vs. ST Microelectronics' ARM Cortex-based processor for battery-powered apps
By Ed Hopkins
(02/26/08, 01:23:00 AM EST) -- Embedded.com
(02/26/08, 01:23:00 AM EST) -- Embedded.com
I recently conducted a tradeoff study (see Table 1) on several 16 and 32-bit low-power microprocessors for a handheld device in the biotech industry. There are four key areas of concern: power/current consumption, physical package size, cost, and compiler/firmware support. Texas Instrument's low-power 16-bit MSP430 family has traditionally been a first choice for this sort of application. The Renesas family of 16-bit micros is competitive with the MSP430 in pricing but does not beat the MSP in power consumption. However, the new ARM Cortex offering from ST Microelectronics, is the first chip on the market giving TI a serious run for its MSP money.
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
- High-Speed 3.3V I/O library with 8kV ESD Protection in TSPCo 65nm
- Verification IP for DisplayPort/eDP
- Wirebond Digital and Analog Library in TSMC 65nm
Related White Papers
- Cortex-A9 Processor Optimization Pack
- ARM Cortex-R4, A mid-range processor for deeply-embedded applications
- Cortex-R4 -- A comparison with the ARM9E processor family
- Complex SoC Verification using ARM Processor
Latest White Papers
- What tamper detection IP brings to SoC designs
- Analyzing Modern NVIDIA GPU cores
- RISC-V in 2025: Progress, Challenges,and What’s Next for Automotive & OpenHardware
- Leveraging RISC-V as a Unified, Heterogeneous Platform for Next-Gen AI Chips
- Design and implementation of a hardened cryptographic coprocessor for a RISC-V 128-bit core