System-on-chip technology comes of age

Pushkar Ranade, Senior Director  of Process Integration, SuVolta Inc.
EETimes (10/5/2012 1:25 PM EDT)
 
The silicon transistor continues to be at the heart of post-PC era products like the smartphone and the tablet. The success metrics for the transistor, however, are quite different for these mobile consumer products than they have been in the past. Frequency (clock-speed) was the primary metric in the PC era and the central processing unit (CPU) was the primary chip that drove advancements in semiconductor technology for decades. Form-factor was hardly an influencer and there wasn’t as much of a drive to integrate system-level functionality either on-chip (SoC) or in-package (SiP).

Form-factor, cost and power for a given function are now critical drivers in the mobile market and that in turn has increased the importance of on-chip integration of functional hardware (e.g. power management, computing, audio/video, graphics, GPS and radio). This shift from mostly performance-centric chips to mostly power-constrained chips and the focus on lowering cost and increasing system-level integration is poised to disrupt the traditional semiconductor landscape. SoC technology has been used by fabless vendors and foundries for well over a decade. But it is the rapid proliferation of mobile post-PC products that is proving to be the catalyst for this technology to finally realize its full disruptive potential. Within the last five years, SoC technology has moved from being at the heart of smartphones to enabling tablets and full feature mobile computers like ultrabooks. This article describes the emerging importance of the SoC, its likely technological evolution and its potential impact on the semiconductor industry in a mobility driven age.

To read the full article, click here

×
Semiconductor IP