Securing SoC Platform Oriented Architectures with a hardware Root of Trust
By Craig Rawlings, Certicom Corp.
Embedded.com (July 06, 2009)
While it has long been the purview of electronic product vendors to rise to the challenges of managing ever shortening product life cycles, a new trend is afoot that may turn the tables in favor of longer platform hardware life cycles.
As embedded programmable processor based features increase in power, increasingly sophisticated platform System on Chip (SoC) architectures, including configurable hardware, boot code, firmware, and system software now bring to systems the ability to modify basic hardware functions and features without redesigning the SoC from scratch.
The real trick is how to efficiently and securely manage these changes to system hardware throughout the supply chain. For conceptually newer products there will be requirements that drive configuration of in-market system features. In other words, the customer may have the ability in the future to upgrade his product with premium system features after his or her original purchase.
Related Semiconductor IP
- RISC-V CPU IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
Related White Papers
- Hardware Co-Verification using VMM HAL-SCEMI On ChipIT Platform
- SoC clock monitoring issues: Scenarios and root cause analysis
- Selecting the right hardware configuration for the signal processing platform
- Why Hardware Root of Trust Needs Anti-Tampering Design
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference