Migrating ARM7 Code to a Cortex-M3 MCU (Part 2)
In Part 1 in this series, I dealt with the myriad of details relating to exception vector table formating, startup code/stack configuration, remapping RAM functions, and hardware interrupt configuration that a programmer must be concerned with porting code from an existing ARM7 to the Cortex-M3 core. Now in this second part, the tutorial continues with a discussion of software interrupts, fault handling, the SWP command, instruction time, assembly language, and optimizations.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- Migrating ARM7 code to a Cortex-M3 MCU
- How a voltage glitch attack could cripple your SoC or MCU - and how to securely protect it
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- Exploring a Parallel Universe - It's Coming to a Design Near You
Latest White Papers
- Monolithic 3D FPGAs Utilizing Back-End-of-Line Configuration Memories
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard