How to write an optimized FIR filter
By Robert Oshana, Texas Instruments
April 23, 2007, dspdesignline.com
This article shows how to write optimized FIR filter code for a DSP, using the Texas Instruments C55x architecture as an example.
April 23, 2007, dspdesignline.com
This article shows how to write optimized FIR filter code for a DSP, using the Texas Instruments C55x architecture as an example.
Today's DSP architectures are made specifically to maximize throughput of DSP algorithms, such as a DSP filter. Some of the features of a DSP include:
- On-chip memory – Internal memory allows the DSP fast access to algorithm data such as input values, coefficients and intermediate values.
- Special MAC instruction – For performing a multiply and accumulate, the crux of a digital filter, in one cycle.
- Separate program and data buses – Allows the DSP to fetch code without affecting the performance of the calculations.
- Multiple read buses – For fetching all the data to feed the MAC instruction in one cycle.
- Separate Write Buses – For writing the results of the MAC instruction. Parallel architecture – DSPs have multiple instruction units so that more than one instruction can be executed per cycle.
- Pipelined architecture – DSPs execute instructions in stages so more than one instruction can be executed at a time. For example, while one instruction is doing a multiply another instruction can be fetching data with other resources on the DSP chip.
- Circular buffers – To make pointer addressing easier when cycling through coefficients and maintaining past inputs.
- Zero overhead looping – Special hardware to take care of counters and branching in loops.
- Bit-reversed addressing – For calculating FFTs.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- How to manage changing IP in an evolving SoC design
- Systolic FIR Filter Based FPGA
- Selecting an embedded MCU: How to avoid evaluation trap?
- How to achieve 1 trillion floating-point operations-per-second in an FPGA
Latest White Papers
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience