Analyzing multithreaded applications - Identifying performance bottlenecks on multicore systems
Nandan Tripathi and Amrit Singh, Freescale Semiconductor
EETimes (4/7/2011 11:04 AM EDT)
Abstract
Various aspects preventing applications from achieving theoretical maximum utilization of multicore resources include: operating system (scheduling, synchronization, etc.), application code (parallelization factor, data/function decomposition, etc.), and hardware architecture scalability (cores, memory subsystem, interconnects, etc.).
We use various multithreaded execution scenarios generated through EEMBC's Multibench as stimulus. We introduce a step by step methodology to analyze these scenarios and identify the bottlenecks. Techniques used for kernel tracing, time/function profiling, etc. and tools used to deploy the methodology are discussed next. The paper ends with discussion of various case studies representing different bottlenecks.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- Multi-core multi-threaded SoCs pose debugging hurdles
- Achieving multicore performance in a single core SoC using a multi-threaded virtual multiprocessor: Part 1
- Achieving multicore performance in a single core SoC design using a multi-threaded virtual multiprocessor: Part 2
- Meeting Increasing Performance Requirements in Embedded Applications with Scalable Multicore Processors
Latest White Papers
- Monolithic 3D FPGAs Utilizing Back-End-of-Line Configuration Memories
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard