The SoC Interconnect Fabric: A Brief History
The high functional integration of system-on-chip designs today is driving the need for new technological approaches in semiconductor design. Anyone who owns a Samsung Galaxy S4, HTC One or comparable smartphone can see the benefits of integrating onto one chip all the computing functions that were traditionally separate, discrete chips on a PC computer motherboard. For next-generation devices, developers are driving even greater computing power, higher resolution graphics, and improved media processing into the integrated SoCs that enable these systems. This high level of integration is causing on-chip communications and transaction handling to become a system constraint within the SoC, limiting the achievable performance of SoCs no matter how optimized the individual CPU, GPU and other IP blocks.
All indications point to ever-higher levels of integration and further SoC advancements in the years to come. This will enable even more functions to be added, making systems more sophisticated, smaller, more power-efficient, and more cost-effective. Yet there is still one critical area of the chip design that needs to be addressed: The on-chip interconnect fabric.
To read the full article, click here
Related Semiconductor IP
- Oscillator (HF)
- NoC System IP
- Cloud-active NOC configuration tool for generating and simulating Coherent and Non-Coherent NoCs
- Tessent NoC Monitor
- Network-on-Chip (NoC) Interconnect IP
Related Blogs
- 2024 Set The Stage For NoC Interconnect Innovations In SoC Design
- Busses, Crossbars and NoCs: The 3 Eras of SoC Interconnect History
- A Brief History of the Fabless Semiconductor Industry
- A Brief History of TSMC
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview