Physically Unclonable Functions as a Solid Foundation of Platform Security Architecture
Introduction
Today, there is general agreement amongst most stakeholders that IoT is not going to take off and reach its full potential unless we come up with a solid approach to securing both the “Things” in IoT and the communication between them. An Arm-led initiative which is specifically relevant to device OEMs and silicon manufacturers is the Platform Security Architecture or PSA. PSA is a framework that aims to secure a trillion connected devices by providing a scalable and hardware-backed approach to threat analysis, system architecture and reference implementations for IoT devices.
In this article we will show how SRAM PUF technology is a very good fit to some of the most fundamental PSA objectives. In particular it enables a strong and flexible protection for the heart of the Root of Trust: the immutable Root of Trust – the part that stays unchanged over the lifetime of a device.
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related Blogs
- Secret Key Generation with Physically Unclonable Functions
- Novel Microprocessor-based Physical Unclonable Function Demonstrated
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?