Is 2D Scaling Dead? - Other Considerations
In the last 2 posts in this series, I examined the lithography and transistor design issues that will need to be solved in order to save 2D scaling as we know it. In this post I will look at several other considerations.
For the moment, let’s assume that we are able to address the lithography and transistor design issues that I’ve identified in the previous posts. TSMC recently announced it will take delivery of an EUV lithography machine, so let’s assume they are successful in making the move to the 13.5 nm wavelength. IBM, TSMC, and Intel are already using multi-gate FETs in their most advanced process development and ITRS predicts it will be standard for the 32nm node, so let’s assume that will work out as well. If so, are we home free?
To read the full article, click here
Related Semiconductor IP
- UCIe Chiplet PHY & Controller
- MIPI D-PHY1.2 CSI/DSI TX and RX
- Low-Power ISP
- eMMC/SD/SDIO Combo IP
- DP/eDP
Related Blogs
- Is 2D Scaling Really Dead or Just Mostly Dead?
- Is 2D Scaling Dead? Looking at Transistor Design
- The Future Of Scaling
- How far can multicore SoC scaling go? Cavium's Octeon II
Latest Blogs
- Cadence Unveils the Industry’s First eUSB2V2 IP Solutions
- Half of the Compute Shipped to Top Hyperscalers in 2025 will be Arm-based
- Industry's First Verification IP for Display Port Automotive Extensions (DP AE)
- IMG DXT GPU: A Game-Changer for Gaming Smartphones
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms