Is 2D Scaling Dead? - Other Considerations
In the last 2 posts in this series, I examined the lithography and transistor design issues that will need to be solved in order to save 2D scaling as we know it. In this post I will look at several other considerations.
For the moment, let’s assume that we are able to address the lithography and transistor design issues that I’ve identified in the previous posts. TSMC recently announced it will take delivery of an EUV lithography machine, so let’s assume they are successful in making the move to the 13.5 nm wavelength. IBM, TSMC, and Intel are already using multi-gate FETs in their most advanced process development and ITRS predicts it will be standard for the 32nm node, so let’s assume that will work out as well. If so, are we home free?
Related Semiconductor IP
- JESD204D Transmitter and Receiver IP
- 100G UDP IP Stack
- Frequency Synthesizer
- Temperature Sensor IP
- LVDS Driver/Buffer
Related Blogs
- Is 2D Scaling Really Dead or Just Mostly Dead?
- Is 2D Scaling Dead? Looking at Transistor Design
- The Future Of Scaling
- How far can multicore SoC scaling go? Cavium's Octeon II
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?