Virtual prototypes simplify real-time embedded system power modeling
Embedded.com
Oct 21 2005 (9:00 AM)
Portable and embedded products that consume less power have a very significant advantage in today's extremely competitive markets. Each generation of product planning must satisfy substantial increases in functionality and performance plus substantial reductions in power consumption. This is particularly true in the case of battery-powered embedded and portable (often wireless) consumer electronics systems.
These portable products are become physically smaller with each new generation, yet consumers have grown to expect more and better functionality (which requires increased processing capability and performance) and to demand longer battery life. In addition to actually making telephone calls, for example, a modern cell phone may include features such as the ability to act as a personal organizer; play games; take, transmit, and receive still pictures and/or short videos; browse the internet; and so forth.
In the past, the focus of next-generation product planning has been concentrated largely on the micro-architecture of the underlying microprocessing units. However, the improvement of the processor micro-architecture typically yields only second- or third-order effects with regard to improving performance.
By comparison, the overall hardware (platform) architecture and the architecture and algorithmic content of the software that runs on it both have first-order effects at the system level.
Creating optimal low-power designs requires making sophisticated tradeoffs in the hardware architecture, the software architecture, and the underlying software algorithms. The creation of successful power-sensitive designs requires system architects and engineers (both hardware and software) to have the ability to accurately and efficiently perform and quantify such tradeoffs. In order to achieve this, the architects and engineers require the ability to access and analyze power data early in the design process.
Related Semiconductor IP
- JESD204D Transmitter and Receiver IP
- 100G UDP IP Stack
- Frequency Synthesizer
- Temperature Sensor IP
- LVDS Driver/Buffer
Related White Papers
- Virtual multi-cores simplify real-time system design
- Mixed-level modeling allows IC virtual prototypes
- Anti tamper real time clock (RTC) - make your embedded system secure
- Embedded system virtualization for executable specifications and use case modeling
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference