Developing processor-compatible C-code for FPGA hardware acceleration
David Pellerin and Brian Durwood, Impulse Accelerated Technologies
8/21/2011 3:07 PM EDT
FPGAs are becoming increasingly popular with software teams to accelerate critical portions of their code. In most cases these teams already have processing stacks and applications written in C that target embedded microprocessors or servers. For applications that require acceleration, a logical next step is to offload some portion of the code to an FPGA. A good way to do this is to migrate portions of the working microprocessor system to an FPGA while keeping the code base compatible with the original processor. This approach lowers risk and allows the software team to more easily experiment with alternate implementations, iterating toward an accelerated solution without creating a fundamentally different branch of the code.
This article describes how to identify which code sections can best benefit from hardware acceleration, use coding styles to retain commonality, and select hardware for both development and deployment.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- Hardware Acceleration for Embedded Computing
- How Efinix is Conquering the Hurdle of Hardware Acceleration for Devices at the Edge
- IP Core for RAID 6 Hardware Acceleration
- Adding Hardware Acceleration to the HVL Testbench
Latest White Papers
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience