Extreme Design: Realizing a single-chip CMOS 56 Gs/s ADC for 100 Gbps Ethernet
Ian Dedic, Fujitsu Microelectronics
8/25/2010 7:38 AM EDT
To provide a long-haul, 100-Gbps, optical transport network with maximum reach and immunity to optical fiber non-idealities, the industry has settled on dual-polarization quadrature phase-shift keying (DP-QPSK) as a modulation method, which means that a coherent receiver is required. The biggest implementation challenge resulting from this decision is the need for low-power ultra-high-speed ADCs, and their technology requirements define the way that such a receiver can be implemented.
A 100-Gbps coherent receiver needs four 56-Gs/s analog/digital converters (ADCs) and a tera-OPS DSP which dissipate only tens of watts. This paper discusses the forces pushing towards a single-chip CMOS solution, and the challenges in realizing this.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- Can 10 Gbps Ethernet be an Embedded Design Solution?
- Can 10 Gbps Ethernet be an Embedded Design Solution?
- 10-Gbit Ethernet revenues to reach $3.6 billion by '04, says Dataquest
- Testable SoCs : How systems level considerations impact cost-effective Gigabit Ethernet PHYs
Latest White Papers
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience