Extreme Design: Realizing a single-chip CMOS 56 Gs/s ADC for 100 Gbps Ethernet
Ian Dedic, Fujitsu Microelectronics
8/25/2010 7:38 AM EDT
To provide a long-haul, 100-Gbps, optical transport network with maximum reach and immunity to optical fiber non-idealities, the industry has settled on dual-polarization quadrature phase-shift keying (DP-QPSK) as a modulation method, which means that a coherent receiver is required. The biggest implementation challenge resulting from this decision is the need for low-power ultra-high-speed ADCs, and their technology requirements define the way that such a receiver can be implemented.
A 100-Gbps coherent receiver needs four 56-Gs/s analog/digital converters (ADCs) and a tera-OPS DSP which dissipate only tens of watts. This paper discusses the forces pushing towards a single-chip CMOS solution, and the challenges in realizing this.
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
- High-Speed 3.3V I/O library with 8kV ESD Protection in TSPCo 65nm
- Verification IP for DisplayPort/eDP
- Wirebond Digital and Analog Library in TSMC 65nm
Related White Papers
- Can 10 Gbps Ethernet be an Embedded Design Solution?
- Can 10 Gbps Ethernet be an Embedded Design Solution?
- 10-Gbit Ethernet revenues to reach $3.6 billion by '04, says Dataquest
- Testable SoCs : How systems level considerations impact cost-effective Gigabit Ethernet PHYs
Latest White Papers
- What tamper detection IP brings to SoC designs
- Analyzing Modern NVIDIA GPU cores
- RISC-V in 2025: Progress, Challenges,and What’s Next for Automotive & OpenHardware
- Leveraging RISC-V as a Unified, Heterogeneous Platform for Next-Gen AI Chips
- Design and implementation of a hardened cryptographic coprocessor for a RISC-V 128-bit core