Circuit reliability challenges for the automotive industry
Dina Medhat, Mentor Graphics Corp.
1/14/2013 11:38 AM EST
In the automotive industry, reliability and high quality are key attributes for electronic automotive systems and controls. It is normal for these automotive applications to face high operating voltages, and high electric fields between nets that can lead to oxide breakdown. Moreover, electrical fields can influence sensitive areas on the chip, because high-power areas (60V, 80V, 100V, etc.) are commonly located next to logic areas (1.8V, 5V, etc.). Consequently, when designing and verifying many smart power processes, designers must deal with metal spacing design rules that are dependent on voltage drop. For example:
- Metal2 minimum spacing can be x if voltage drop across lines is up to 30V, and it will be y if voltage drop across lines is up to 80V. Where y > x, similar rules apply for the rest of the metal layers.
- Minimum spacing between metal and poly is x where voltage difference is higher than V volt.
- Shapes on a specified metal layer can’t cross a specified area, based on the voltage difference.
- It is not allowed to cross an adjacent metal level if voltage drop is higher than V volt.
Trying to implement such rules in the entire design flow, starting from layout routing implementation through design rule checking (DRC), is too conservative, as well as inefficient, due to lack of voltage information on nets (both in schematic and layout). Trying to achieving this goal with traditional exhaustive dynamic simulation is simply not practical, due to the turnaround time involved, and, if the design is very large, it may not even be possible to simulate it in its entirety. Design teams need a way to determine the voltages at all internal nodes statically. Advanced EDA solutions that can quickly and accurately evaluate customized electrical requirements can help designers achieve their goal of generating the proper net voltage information in an efficient static way.
Related Semiconductor IP
- RISC-V CPU IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
Related White Papers
- Paving the way for the next generation audio codec for the True Wireless Stereo (TWS) applications - PART 1 : TWS challenges explained
- Are you optimizing the benefits of cloud computing for faster reliability verification?
- PCIe IP With Enhanced Security For The Automotive Market
- Automotive System & Software Development Challenges - Part 1
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference