SystemC TLM-2.0 Virtual Platform Direct Memory Interface (DMI) Performance Impact
One of the most interesting concepts in SystemC TLM-2.0 is the concept of Direct Memory Interface (DMI). I remember when Mentor Graphics introduced Seamless back in the mid-1990's. Many users were impressed with how fast it could run embedded software.
Of course, things have changed a lot in the last fifteen years, but many of the principles of simulation performance are still the same as what I wrote in my now ancient book published in 2004. The biggest impact has been the advancement in processor model performance based on code morphing combined with just-in-time (JIT) compilation to map the target CPU instructions into the instruction set of the host computer. Even though processor models are a lot better, the options to run faster haven't changed.
There are really only two ways to improve simulation speed:
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related Blogs
- SSD Interfaces and Performance Effects
- Firmware as the performance differentiator for SSD controllers
- Intel’s Atom-based Tunnel Creek SOC with integrated PCIe interface opens new era for embedded developers
- Creating SystemC TLM-2.0 Peripheral Models
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview