Arm enables the lowest power IoT devices with new Ambiq Apollo4 SoC on TSMC 22nm ULP and ULL libraries
As the world looks set to add billions of smart devices in the coming years, energy efficiency is critical to enable IoT devices connected 24/7. In the past, most IoT designs have been implemented in 40nm or larger geometries, but today we see many Arm partners migrating from these mature technologies to 22nm.
Why is 22nm process a compelling option for IoT? Clearly, there is a performance advantage in moving from 40nm or even larger process nodes to 22nm, bearing in mind that raw performance is not the right scale for measuring IoT designs. Instead, the best measure is energy for a given compute task. And this is where 22nm shines.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related Blogs
- Novatek advancing digital television with Arm POP IP on TSMC 22nm ULP
- Arm Delivers a Comprehensive Physical IP Platform for Optimized SoCs with TSMC 22nm ULP/ULL Process Technology
- TSMC (TSM) is Having Another SoC Year!
- Next-Generation DDR4 and LPDDR4 IP in TSMC 16FF+ Enable 200Gb+ Data Transfers for Mobile, Cloud, and IoT Platforms
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview