PCIe 3.0, 2.1, 1.1 Controller with the PHY Interface for PCI Express (PIPE) specification and native user interface support

Overview

Rambus PCIe 3.0 Controller is a highly configurable PCIe 3.0 interface Soft IP designed for ASIC and FPGA implementations supporting endpoint, root port, switch, bridge and advanced features such as SR-IOV, multi-function, data protection (ECC, ECRC), ATS, TPH, Advanced Error Reporting (AER) and more. Rambus PCIe 3.0 Controller is the industry’s PCIe IP of choice for enterprise-class applications requiring the highest performance, reliability, and flexibility.

Key Features

  • Complies with the PCI Express® Base 3.0 Specification, rev.3.1
  • Supports Endpoint, Root-Port, Dual-Role, Switch configurations
  • Supports x16, x8, x4, x2, x1 at Gen3, Gen2, Gen1 speeds
  • Implements one Virtual Channel
  • Maximum payload size of up to 4KB
  • Built-in clock domain management
  • User Interface
  • Tx/Rx for data
  • 256-bit data path, user-selectable frequency
  • Sideband interfaces for configuration, debug, monitoring, advanced features
  • TL bypass interface for switch/bridge implementations
  • PHY Interface
    • PIPE 3.0 compliant
    • 32bit/250MHz in Gen3 mode
    • 16-bit mode supported
  • Advanced features include
    • Multi-function
    • Advanced Error Reporting (AER)
    • Data Protection (ECC,ECRC)
    • End-End TLP prefixes
    • TPH
    • OBFF
    • MSI, MSI-X
    • ASPM and legacy power management
    • Lane Reversal
    • Hot Plug
    • Atomic operations
    • Virtualization ready with SR-IOV and ATS /ARI
    • L1 PM substate with CLKREQ

Benefits

  • Engineered for both ASIC/SoC and FPGA implementations. Allows seamless migration from FPGA prototyping design to ASIC/SoC production design with same RTL. Fully timing closed on leading edge FPGA from Altera and Xilinx
  • Multi-mode PIPE support enables proven interoperability with broad range of PHY IP at various foundries and process nodes
  • Demonstrated SR-IOV support allows seamless integration into virtualized environments.
  • Support for advanced Low Power states enables lower power consumption in energy-conscious applications
  • Configurable FIFO based user interface with clock-domain-crossing provides maximum interfacing flexibility and throughput.
  • Extensive data integrity features provide data protection on entire data path for storage and other data critical applications

Block Diagram

PCIe 3.0, 2.1, 1.1 Controller with the PHY Interface for PCI Express (PIPE) specification and native user interface support Block Diagram

Applications

  • HPC,
  • Cloud Computing,
  • AI,
  • Machine Learning,
  • Enterprise,
  • Networking,
  • Automotive,
  • AR/VR,
  • Test and Measurement

Deliverables

  • Verilog RTL,
  • Supporting Documentation

Technical Specifications

Foundry, Node
Any
Maturity
In production
Availability
Available
GLOBALFOUNDRIES
In Production: 28nm SLP , 40nm LP , 55nm , 65nm , 65nm LP , 65nm LPe , 90nm , 90nm LP , 130nm , 130nm HP , 130nm LP , 130nm LV
Pre-Silicon: 28nm SLP , 40nm LP , 55nm , 65nm , 65nm LP , 65nm LPe , 90nm , 90nm LP , 130nm , 130nm HP , 130nm LP , 130nm LV
Silicon Proven: 28nm SLP , 40nm LP , 55nm , 65nm , 65nm LP , 65nm LPe , 90nm , 90nm LP , 130nm , 130nm HP , 130nm LP , 130nm LV
Renesas
In Production: 40nm , 55nm , 90nm
Pre-Silicon: 40nm , 55nm , 90nm
Silicon Proven: 40nm , 55nm , 90nm
SMIC
In Production: 40nm LL , 55nm G , 55nm LL , 65nm LL , 90nm G , 90nm LL , 110nm G , 130nm G , 130nm LL , 130nm LV
Pre-Silicon: 40nm LL , 55nm G , 55nm LL , 65nm LL , 90nm G , 90nm LL , 110nm G , 130nm G , 130nm LL , 130nm LV
Silicon Proven: 40nm LL , 55nm G , 55nm LL , 65nm LL , 90nm G , 90nm LL , 110nm G , 130nm G , 130nm LL , 130nm LV
TSMC
In Production: 40nm G , 40nm LP , 45nm GS , 45nm LP , 55nm GP , 55nm LP , 65nm G , 65nm GP , 65nm LP , 80nm , 80nm GT , 80nm HS , 90nm G , 90nm GOD , 90nm GT , 90nm LP , 90nm zzz , 110nm G , 110nm LVP , 130nm G , 130nm LP , 130nm LV , 130nm LVOD
Pre-Silicon: 28nm HP , 28nm HPL , 28nm HPM , 28nm LP , 40nm G , 40nm LP , 45nm GS , 45nm LP , 55nm GP , 55nm LP , 65nm G , 65nm GP , 65nm LP , 80nm , 80nm GT , 80nm HS , 90nm G , 90nm GOD , 90nm GT , 90nm LP , 90nm zzz , 110nm G , 110nm LVP , 130nm G , 130nm LP , 130nm LV , 130nm LVOD
Silicon Proven: 40nm G , 40nm LP , 45nm GS , 45nm LP , 55nm GP , 55nm LP , 65nm G , 65nm GP , 65nm LP , 80nm , 80nm GT , 80nm HS , 90nm G , 90nm GT , 90nm LP , 90nm zzz , 110nm G , 110nm LVP , 130nm G , 130nm LP , 130nm LV , 130nm LVOD
UMC
In Production: 40nm , 40nm LP , 65nm LL , 65nm LP , 65nm SP , 90nm G , 90nm LL , 90nm SP
Pre-Silicon: 40nm , 40nm LP , 65nm LL , 65nm LP , 65nm SP , 90nm G , 90nm LL , 90nm SP
Silicon Proven: 40nm , 40nm LP , 65nm LL , 65nm LP , 65nm SP , 90nm G , 90nm LL , 90nm SP
×
Semiconductor IP