NEWS ANALYSIS - Xilinx puts ARM core into its FPGAs
New embedded systems architecture employs ARM core in processor-centric FPGAs.
By Richard Nass, Embedded.com
(04/27/10, 05:00:00 PM EDT)
My first reaction was, "It's about time." My second reaction was, "I hope they did it right." Let me explain. Xilinx, considered by many to be the market leader for FPGAs, had a hole in its lineup, at least in my eyes. For at least a couple of years, I asked the folks at Xilinx why they weren't making a serious run at ARM-based FPGAs.
I learned that it wasn't as simple as dropping the core into the company's library. There were It actually took some design issues that needed to be overcome to ensure that the ARM core could operate at its maximum efficiency. Those changes were put in place last fall, when Xilinx announced a technology agreement with ARM.
Essentially, the technology agreement revolved around changes made to the AMBA bus to keep the programmable logic tightly coupled with the processor core. Xilinx adopted ARM physical IP, and the two companies made a technical commitment to work together to define the AMBA 4 specification, which is the de-facto industry standard for on-chip communications on SoCs designed with an ARM core.
With that technology in place, it was clear where Xilinx was headed. However, there were a few details on which Xilinx remained mum. As of today at the Embedded Systems Conference Silicon Valley, that silence is broken and all questions are being answered. They're calling it their Extensible Processing Platform that takes advantage of ARM's dual-core Cortex-A9 MPCore processors, each running at up to 800 MHz. With the platform, designers can apply a combination of serial and parallel processing for applications that require high-speed access to real-time inputs, high-performance processing, and/or complex digital signal processing.
To read the full article, click here
Related Semiconductor IP
- Xtal Oscillator on TSMC CLN7FF
- Wide Range Programmable Integer PLL on UMC L65LL
- Wide Range Programmable Integer PLL on UMC L130EHS
- Wide Range Programmable Integer PLL on TSMC CLN90G-GT-LP
- Wide Range Programmable Integer PLL on TSMC CLN80GC
Related News
- Xilinx Extends Functional Safety into AI-class Devices
- LeapMind Announces Participation in Alliance Program of Xilinx, a Major US FPGA Innovator
- Xilinx Expands into New Applications with Cost-Optimized UltraScale+ Portfolio for Ultra-Compact, High-Performance Edge Compute
- Bluespec, Inc. Releases Ultra-Low Footprint RISC-V Processor Family for Xilinx FPGAs, Offers Free Quick-Start Evaluation.
Latest News
- RaiderChip NPU for LLM at the Edge supports DeepSeek-R1 reasoning models
- The world’s first open source security chip hits production with Google
- ZeroPoint Technologies Unveils Groundbreaking Compression Solution to Increase Foundational Model Addressable Memory by 50%
- Breker RISC-V SystemVIP Deployed across 15 Commercial RISC-V Projects for Advanced Core and SoC Verification
- AheadComputing Raises $21.5M Seed Round and Introduces Breakthrough Microprocessor Architecture Designed for Next Era of General-Purpose Computing