The JPEG-LS-E core implements a highly efficient, low-power, lossless and near-lossless image compression engine that is compliant to the JPEG-LS, ISO/IEC 14495-1 standard.
Based on LOCO-I (LOw COmplexity LOssless COmpression for Images), the JPEG-LS algorithm leads in numerically lossless compression efficiency, attaining compression ratios similar or superior to those obtained with more advanced algorithms such as JPEG 2000. JPEG-LS also enables hardware implementations with a much smaller silicon footprint and lower memory requirements, thanks to its lower computational complexity and line-based processing. Further, the Near-Lossless mode of the JPEG-LS standard makes higher compression ratios and visually lossless compressed images feasible, allowing the user to set the maximum acceptable difference between a reconstructed and an original image sample.
The JPEG-LS-E core delivers the full compression efficiency of the standard in a compact and easy-to-use hardware block. The core interfaces to the system via standardized AMBA® interfaces: it accepts images and outputs compressed data via AXI4-Stream interfaces, and provides access to its control and status registers via a 32-bit APB interface. After its registers are programmed, the core can encode an arbitrary number of images without requiring any further assistance or action from the system. Users can optionally insert timestamps or other metadata in the compressed stream using a dedicated AXI Streaming interface.
The core is designed with industry best practices, and its reliability has been proven through both rigorous verification and silicon validation. The deliverables include a complete verification environment and a bit-accurate software model.