PlasticArm: Realizing the full potential of the Internet of Things

Microprocessors have undergone an unbelievable period of transformation across just a few decades. The world’s first commercially produced processor was a modest 4-bit central processing unit (CPU) with 2,300 transistors. It was fabricated in 10µm process technology in silicon and capable only of simple arithmetic calculations. Nowadays, state-of-the-art silicon 64-bit microprocessors have 30 billion transistors – such as the AWS Graviton2 microprocessor fabricated using a 7nm process. Such sophisticated technology has enabled the development of powerful devices for large and small-scale applications across many industries. But could there be instances where this silicon is unsuitable?

Millions of everyday objects, such as food packaging, clothing, and bandages could benefit from having intelligence embedded into them. While microprocessors are at the heart of every electronic device, and unit costs have been dramatically reduced over time, silicon microprocessor costs can be one of the challenges for certain high volume applications. Designers need to consider alternative methods and materials in order to realize the full potential of the Internet of Things.

Click here to read more ...

×
Semiconductor IP